Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 143
Filtrar
1.
ChemMedChem ; : e202400269, 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38724444

RESUMO

Targeting the protein arginine methyltransferase 1 (PRMT1) has emerged as a promising therapeutic strategy in cancer treatment. The phase 1 clinical trial for GSK3368715, the first PRMT1 inhibitor to enter the clinic, was terminated early due to a lack of clinical efficacy, extensive treatment-emergent effects, and dose-limiting toxicities. The incidence of the latter two events may be associated with inhibition-driven pharmacology as a high and sustained concentration of inhibitor is required for therapeutic effect. The degradation of PRMT1 using a proteolysis targeting chimera (PROTAC) may be superior to inhibition as proceeds via event-driven pharmacology where a PROTAC acts catalytically at a low dose. PROTACs containing the same pharmacophore as GSK3368715, combined with a motif that recruits the VHL or CRBN E3-ligase, were synthesised. Suitable cell permeability and target engagement were shown for selected candidates by the detection of downstream effects of PRMT1 inhibition and by a NanoBRET assay for E3-ligase binding, however the candidates did not induce PRMT1 degradation. This paper is the first reported investigation of PRMT1 for targeted protein degradation and provides hypotheses and insights to assist the design of PROTACs for PRMT1 and other novel target proteins.

2.
Genome Biol ; 25(1): 44, 2024 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-38317241

RESUMO

BACKGROUND: The androgen receptor (AR) is a tumor suppressor in estrogen receptor (ER) positive breast cancer, a role sustained in some ER negative breast cancers. Key factors dictating AR genomic activity in a breast context are largely unknown. Herein, we employ an unbiased chromatin immunoprecipitation-based proteomic technique to identify endogenous AR interacting co-regulatory proteins in ER positive and negative models of breast cancer to gain new insight into mechanisms of AR signaling in this disease. RESULTS: The DNA-binding factor GATA3 is identified and validated as a novel AR interacting protein in breast cancer cells irrespective of ER status. AR activation by the natural ligand 5α-dihydrotestosterone (DHT) increases nuclear AR-GATA3 interactions, resulting in AR-dependent enrichment of GATA3 chromatin binding at a sub-set of genomic loci. Silencing GATA3 reduces but does not prevent AR DNA binding and transactivation of genes associated with AR/GATA3 co-occupied loci, indicating a co-regulatory role for GATA3 in AR signaling. DHT-induced AR/GATA3 binding coincides with upregulation of luminal differentiation genes, including EHF and KDM4B, established master regulators of a breast epithelial cell lineage. These findings are validated in a patient-derived xenograft model of breast cancer. Interaction between AR and GATA3 is also associated with AR-mediated growth inhibition in ER positive and ER negative breast cancer. CONCLUSIONS: AR and GATA3 interact to transcriptionally regulate luminal epithelial cell differentiation in breast cancer regardless of ER status. This interaction facilitates the tumor suppressor function of AR and mechanistically explains why AR expression is associated with less proliferative, more differentiated breast tumors and better overall survival in breast cancer.


Assuntos
Neoplasias da Mama , Fator de Transcrição GATA3 , Receptores Androgênicos , Feminino , Humanos , Neoplasias da Mama/metabolismo , Linhagem Celular Tumoral , Células Epiteliais/metabolismo , Fator de Transcrição GATA3/genética , Fator de Transcrição GATA3/metabolismo , Histona Desmetilases com o Domínio Jumonji/genética , Fenótipo , Proteômica , Receptores Androgênicos/genética
3.
Dev Cell ; 58(19): 1967-1982.e8, 2023 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-37734383

RESUMO

Neuroblastoma is the most common extracranial solid tumor in infants, arising from developmentally stalled neural crest-derived cells. Driving tumor differentiation is a promising therapeutic approach for this devastating disease. Here, we show that the CDK4/6 inhibitor palbociclib not only inhibits proliferation but induces extensive neuronal differentiation of adrenergic neuroblastoma cells. Palbociclib-mediated differentiation is manifested by extensive phenotypic and transcriptional changes accompanied by the establishment of an epigenetic program driving expression of mature neuronal features. In vivo palbociclib significantly inhibits tumor growth in mouse neuroblastoma models. Furthermore, dual treatment with retinoic acid resets the oncogenic adrenergic core regulatory circuit of neuroblastoma cells, further suppresses proliferation, and can enhance differentiation, altering gene expression in ways that significantly correlate with improved patient survival. We therefore identify palbociclib as a therapeutic approach to dramatically enhance neuroblastoma differentiation efficacy that could be used in combination with retinoic acid to improve patient outcomes.


Assuntos
Neuroblastoma , Piperazinas , Piridinas , Tretinoína , Animais , Camundongos , Humanos , Linhagem Celular Tumoral , Diferenciação Celular , Tretinoína/farmacologia , Neuroblastoma/tratamento farmacológico , Adrenérgicos/uso terapêutico
5.
Cell Rep ; 42(7): 112751, 2023 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-37405921

RESUMO

Hereditary leiomyomatosis and renal cell cancer (HLRCC) is a cancer syndrome caused by inactivating germline mutations in fumarate hydratase (FH) and subsequent accumulation of fumarate. Fumarate accumulation leads to profound epigenetic changes and the activation of an anti-oxidant response via nuclear translocation of the transcription factor NRF2. The extent to which chromatin remodeling shapes this anti-oxidant response is currently unknown. Here, we explored the effects of FH loss on the chromatin landscape to identify transcription factor networks involved in the remodeled chromatin landscape of FH-deficient cells. We identify FOXA2 as a key transcription factor that regulates anti-oxidant response genes and subsequent metabolic rewiring cooperating without direct interaction with the anti-oxidant regulator NRF2. The identification of FOXA2 as an anti-oxidant regulator provides additional insights into the molecular mechanisms behind cell responses to fumarate accumulation and potentially provides further avenues for therapeutic intervention for HLRCC.


Assuntos
Carcinoma de Células Renais , Neoplasias Renais , Leiomiomatose , Síndromes Neoplásicas Hereditárias , Neoplasias Cutâneas , Neoplasias Uterinas , Feminino , Humanos , Fumarato Hidratase/genética , Antioxidantes , Fator 2 Relacionado a NF-E2/genética , Leiomiomatose/genética , Neoplasias Uterinas/genética , Neoplasias Cutâneas/genética , Síndromes Neoplásicas Hereditárias/genética , Cromatina , Neoplasias Renais/genética , Carcinoma de Células Renais/genética , Fator 3-beta Nuclear de Hepatócito/genética
6.
Cancer Res ; 83(16): 2656-2674, 2023 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-37272757

RESUMO

As one of the most successful cancer therapeutic targets, estrogen receptor-α (ER/ESR1) has been extensively studied over the past few decades. Sequencing technological advances have enabled genome-wide analysis of ER action. However, comparison of individual studies is limited by different experimental designs, and few meta-analyses are available. Here, we established the EstroGene database through unified processing of data from 246 experiments including 136 transcriptomic, cistromic, and epigenetic datasets focusing on estradiol (E2)-triggered ER activation across 19 breast cancer cell lines. A user-friendly browser (https://estrogene.org/) was generated for multiomic data visualization involving gene inquiry under user-defined experimental conditions and statistical thresholds. Notably, annotation of metadata associated with public datasets revealed a considerable lack of experimental details. Comparison of independent RNA-seq or ER ChIP-seq data with the same design showed large variability and only strong effects could be consistently detected. Temporal estrogen response metasignatures were defined, and the association of E2 response rate with temporal transcriptional factors, chromatin accessibility, and heterogeneity of ER expression was evaluated. Unexpectedly, harmonizing 146 E2-induced transcriptomic datasets uncovered a subset of genes harboring bidirectional E2 regulation, which was linked to unique transcriptional factors and highly associated with immune surveillance in the clinical setting. Furthermore, the context dependent E2 response programs were characterized in MCF7 and T47D cell lines, the two most frequently used models in the EstroGene database. Collectively, the EstroGene database provides an informative and practical resource to the cancer research community to uniformly evaluate key reproducible features of ER regulomes and unravels modes of ER signaling. SIGNIFICANCE: A resource database integrating 246 publicly available ER profiling datasets facilitates meta-analyses and identifies estrogen response temporal signatures, a bidirectional program, and model-specific biases.


Assuntos
Neoplasias da Mama , Regulação Neoplásica da Expressão Gênica , Receptores de Estrogênio , Feminino , Humanos , Neoplasias da Mama/metabolismo , Linhagem Celular Tumoral , Estradiol/farmacologia , Receptor alfa de Estrogênio/genética , Receptor alfa de Estrogênio/metabolismo , Estrogênios , Receptores de Estrogênio/genética , Receptores de Estrogênio/metabolismo , Bases de Dados Genéticas
7.
Mol Cancer Res ; 21(6): 591-604, 2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-36930833

RESUMO

Estrogen receptor alpha (ER/ESR1) mutations occur in 30% to 40% of endocrine resistant ER-positive (ER+) breast cancer. Forkhead box A1 (FOXA1) is a key pioneer factor mediating ER-chromatin interactions and endocrine response in ER+ breast cancer, but its role in ESR1-mutant breast cancer remains unclear. Our previous FOXA1 chromatin immunoprecipitation sequencing (ChIP-seq) identified a large portion of redistributed binding sites in T47D genome-edited Y537S and D538G ESR1-mutant cells. Here, we further integrated FOXA1 genomic binding profile with the isogenic ER cistrome, accessible genome, and transcriptome data of T47D cell model. FOXA1 redistribution was significantly associated with transcriptomic alterations caused by ESR1 mutations. Furthermore, in ESR1-mutant cells, FOXA1-binding sites less frequently overlapped with ER, and differential gene expression was less associated with the canonical FOXA1-ER axis. Motif analysis revealed a unique enrichment of retinoid X receptor (RXR) motifs in FOXA1-binding sites of ESR1-mutant cells. Consistently, ESR1-mutant cells were more sensitive to growth stimulation with the RXR agonist LG268. The mutant-specific response was dependent on two RXR isoforms, RXR-α and RXR-ß, with a stronger dependency on the latter. In addition, T3, the agonist of thyroid receptor (TR) also showed a similar growth-promoting effect in ESR1-mutant cells. Importantly, RXR antagonist HX531 blocked growth of ESR1-mutant cells and a patient-derived xenograft (PDX)-derived organoid with an ESR1 D538G mutation. Collectively, our data support the evidence for a stronger RXR response associated with FOXA1 reprograming in ESR1-mutant cells, suggesting development of therapeutic strategies targeting RXR pathways in breast tumors with ESR1 mutation. IMPLICATIONS: It provides comprehensive characterization of the role of FOXA1 in ESR1-mutant breast cancer and potential therapeutic strategy through blocking RXR activation.


Assuntos
Neoplasias da Mama , Receptor alfa de Estrogênio , Fator 3-alfa Nuclear de Hepatócito , Feminino , Humanos , Neoplasias da Mama/patologia , Cromatina , Receptor alfa de Estrogênio/metabolismo , Fator 3-alfa Nuclear de Hepatócito/metabolismo , Mutação , Receptores X de Retinoides/genética , Transcriptoma
8.
bioRxiv ; 2023 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-36778377

RESUMO

As one of the most successful cancer therapeutic targets, estrogen receptor-α (ER/ESR1) has been extensively studied in decade-long. Sequencing technological advances have enabled genome-wide analysis of ER action. However, reproducibility is limited by different experimental design. Here, we established the EstroGene database through centralizing 246 experiments from 136 transcriptomic, cistromic and epigenetic datasets focusing on estradiol-treated ER activation across 19 breast cancer cell lines. We generated a user-friendly browser ( https://estrogene.org/ ) for data visualization and gene inquiry under user-defined experimental conditions and statistical thresholds. Notably, documentation-based meta-analysis revealed a considerable lack of experimental details. Comparison of independent RNA-seq or ER ChIP-seq data with the same design showed large variability and only strong effects could be consistently detected. We defined temporal estrogen response metasignatures and showed the association with specific transcriptional factors, chromatin accessibility and ER heterogeneity. Unexpectedly, harmonizing 146 transcriptomic analyses uncovered a subset of E2-bidirectionally regulated genes, which linked to immune surveillance in the clinical setting. Furthermore, we defined context dependent E2 response programs in MCF7 and T47D cell lines, the two most frequently used models in the field. Collectively, the EstroGene database provides an informative resource to the cancer research community and reveals a diverse mode of ER signaling.

9.
Chem Commun (Camb) ; 59(13): 1841-1844, 2023 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-36722863

RESUMO

Antibody-drug conjugates containing peroxide-cleavable arylboronic acid linkers are described, which target the high levels of reactive oxygen species (ROS) in cancer. The arylboronic acid linkers rapidly release a payload in the presence of hydrogen peroxide, but remain stable in plasma. Anti-HER2 and PD-L1 peroxide-cleavable ADCs exhibited potent cytotoxicity in vitro.


Assuntos
Antineoplásicos , Imunoconjugados , Imunoconjugados/farmacologia , Peróxidos , Antineoplásicos/farmacologia , Peróxido de Hidrogênio , Ácidos
10.
Oncogene ; 41(50): 5347-5360, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36344675

RESUMO

ARID1a (BAF250), a component of human SWI/SNF chromatin remodeling complexes, is frequently mutated across numerous cancers, and its loss of function has been putatively linked to glucocorticoid resistance. Here, we interrogate the impact of siRNA knockdown of ARID1a compared to a functional interference approach in the HeLa human cervical cancer cell line. We report that ARID1a knockdown resulted in a significant global decrease in chromatin accessibility in ATAC-Seq analysis, as well as affecting a subset of genome-wide GR binding sites determined by analyzing GR ChIP-Seq data. Interestingly, the specific effects on gene expression were limited to a relatively small subset of glucocorticoid-regulated genes, notably those involved in cell cycle regulation and DNA repair. The vast majority of glucocorticoid-regulated genes were largely unaffected by ARID1a knockdown or functional interference, consistent with a more specific role for ARID1a in glucocorticoid function than previously speculated. Using liquid chromatography-mass spectrometry, we have identified a chromatin-associated protein complex comprising GR, ARID1a, and several DNA damage repair proteins including P53 binding protein 1 (P53BP1), Poly(ADP-Ribose) Polymerase 1 (PARP1), DNA damage-binding protein 1 (DDB1), DNA mismatch repair protein MSH6 and splicing factor proline and glutamine-rich protein (SFPQ), as well as the histone acetyltransferase KAT7, an epigenetic regulator of steroid-dependent transcription, DNA damage repair and cell cycle regulation. Not only was this protein complex ablated with both ARID1a knockdown and functional interference, but spontaneously arising DNA damage was also found to accumulate in a manner consistent with impaired DNA damage repair mechanisms. Recovery from dexamethasone-dependent cell cycle arrest was also significantly impaired. Taken together, our data demonstrate that although glucocorticoids can still promote cell cycle arrest in the absence of ARID1a, the purpose of this arrest to allow time for DNA damage repair is hindered.


Assuntos
Reparo do DNA , Proteínas Nucleares , Receptores de Glucocorticoides , Proteína 1 de Ligação à Proteína Supressora de Tumor p53 , Humanos , Ciclo Celular , Pontos de Checagem do Ciclo Celular , Linhagem Celular Tumoral , Cromatina/genética , Dano ao DNA , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Histona Acetiltransferases/metabolismo , Proteínas Nucleares/metabolismo , Fatores de Transcrição/genética , Receptores de Glucocorticoides/metabolismo , Proteína 1 de Ligação à Proteína Supressora de Tumor p53/metabolismo
11.
Front Cell Dev Biol ; 10: 942579, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36263020

RESUMO

Neuroblastoma is believed to arise from sympathetic neuroblast precursors that fail to engage the neuronal differentiation programme, but instead become locked in a pro-proliferative developmental state. Achaete-scute homolog 1 (ASCL1) is a proneural master regulator of transcription which modulates both proliferation and differentiation of sympathetic neuroblast precursor cells during development, while its expression has been implicated in the maintenance of an oncogenic programme in MYCN-amplified neuroblastoma. However, the role of ASCL1 expression in neuroblastoma is not clear, especially as its levels vary considerably in different neuroblastoma cell lines. Here, we have investigated the role of ASCL1 in maintaining proliferation and controlling differentiation in both MYCN amplified and Anaplastic Lymphoma Kinase (ALK)-driven neuroblastoma cells. Using CRISPR deletion, we generated neuroblastoma cell lines lacking ASCL1 expression, and these grew more slowly than parental cells, indicating that ASCL1 contributes to rapid proliferation of MYCN amplified and non-amplified neuroblastoma cells. Genome-wide analysis after ASCL1 deletion revealed reduced expression of genes associated with neuronal differentiation, while chromatin accessibility at regulatory regions associated with differentiation genes was also attenuated by ASCL1 knock-out. In neuroblastoma, ASCL1 has been described as part of a core regulatory circuit of developmental regulators whose high expression is maintained by mutual cross-activation of a network of super enhancers and is further augmented by the activity of MYC/MYCN. Surprisingly, ASCL1 deletion had little effect on the transcription of CRC gene transcripts in these neuroblastoma cell lines, but the ability of MYC/MYCN and CRC component proteins, PHOX2B and GATA3, to bind to chromatin was compromised. Taken together, our results demonstrate several roles for endogenous ASCL1 in neuroblastoma cells: maintaining a highly proliferative phenotype, regulating DNA binding of the core regulatory circuit genes to chromatin, while also controlling accessibility and transcription of differentiation targets. Thus, we propose a model where ASCL1, a key developmental regulator of sympathetic neurogenesis, plays a pivotal role in maintaining proliferation while simultaneously priming cells for differentiation in neuroblastoma.

12.
Artigo em Inglês | MEDLINE | ID: mdl-36041880

RESUMO

Breast cancer presents as multiple distinct disease entities. Each tumor harbors diverse cell populations defining a phenotypic heterogeneity that impinges on our ability to treat patients. To date, efforts mainly focused on genetic variants to find drivers of inter- and intratumor phenotypic heterogeneity. However, these efforts have failed to fully capture the genetic basis of breast cancer. Through recent technological and analytical approaches, the genetic basis of phenotypes can now be decoded by characterizing chromatin variants. These variants correspond to polymorphisms in chromatin states at DNA sequences that serve a distinct role across cell populations. Here, we review the function and causes of chromatin variants as they relate to breast cancer inter- and intratumor heterogeneity and how they can guide the development of treatment alternatives to fulfill the goal of precision cancer medicine.


Assuntos
Cromatina , Neoplasias , Carcinogênese , Transformação Celular Neoplásica , Cromatina/genética , Heterogeneidade Genética , Humanos , Medicina de Precisão
13.
Chem Sci ; 13(30): 8781-8790, 2022 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-35975158

RESUMO

Antibody-drug conjugates (ADCs) are valuable therapeutic entities which leverage the specificity of antibodies to selectively deliver cytotoxins to antigen-expressing targets such as cancer cells. However, current methods for their construction still suffer from a number of shortcomings. For instance, using a single modification technology to modulate the drug-to-antibody ratio (DAR) in integer increments while maintaining homogeneity and stability remains exceptionally challenging. Herein, we report a novel method for the generation of antibody conjugates with modular cargo loading from native antibodies. Our approach relies on a new class of disulfide rebridging linkers, which can react with eight cysteine residues, thereby effecting all-in-one bridging of all four interchain disulfides in an IgG1 antibody with a single linker molecule. Modification of the antibody with the linker in a 1 : 1 ratio enabled the modulation of cargo loading in a quick and selective manner through derivatization of the linker with varying numbers of payload attachment handles to allow for attachment of either 1, 2, 3 or 4 payloads (fluorescent dyes or cytotoxins). Assessment of the biological activity of these conjugates demonstrated their exceptional stability in human plasma and utility for cell-selective cytotoxin delivery or imaging/diagnostic applications.

14.
Nature ; 606(7916): 999-1006, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35676472

RESUMO

Large-scale human genetic data1-3 have shown that cancer mutations display strong tissue-selectivity, but how this selectivity arises remains unclear. Here, using experimental models, functional genomics and analyses of patient samples, we demonstrate that the lineage transcription factor paired box 8 (PAX8) is required for oncogenic signalling by two common genetic alterations that cause clear cell renal cell carcinoma (ccRCC) in humans: the germline variant rs7948643 at 11q13.3 and somatic inactivation of the von Hippel-Lindau tumour suppressor (VHL)4-6. VHL loss, which is observed in about 90% of ccRCCs, can lead to hypoxia-inducible factor 2α (HIF2A) stabilization6,7. We show that HIF2A is preferentially recruited to PAX8-bound transcriptional enhancers, including a pro-tumorigenic cyclin D1 (CCND1) enhancer that is controlled by PAX8 and HIF2A. The ccRCC-protective allele C at rs7948643 inhibits PAX8 binding at this enhancer and downstream activation of CCND1 expression. Co-option of a PAX8-dependent physiological programme that supports the proliferation of normal renal epithelial cells is also required for MYC expression from the ccRCC metastasis-associated amplicons at 8q21.3-q24.3 (ref. 8). These results demonstrate that transcriptional lineage factors are essential for oncogenic signalling and that they mediate tissue-specific cancer risk associated with somatic and inherited genetic variants.


Assuntos
Carcinogênese , Neoplasias Renais , Fator de Transcrição PAX8 , Transdução de Sinais , Alelos , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Carcinogênese/genética , Carcinoma de Células Renais/metabolismo , Carcinoma de Células Renais/patologia , Ciclina D1/genética , Regulação Neoplásica da Expressão Gênica , Humanos , Rim/metabolismo , Rim/patologia , Neoplasias Renais/metabolismo , Neoplasias Renais/patologia , Mutação , Fator de Transcrição PAX8/genética , Fator de Transcrição PAX8/metabolismo , Proteínas Proto-Oncogênicas c-myc/genética , Proteína Supressora de Tumor Von Hippel-Lindau/genética
15.
BMC Genomics ; 23(1): 255, 2022 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-35366798

RESUMO

BACKGROUND: The pro-neural transcription factor ASCL1 is a master regulator of neurogenesis and a key factor necessary for the reprogramming of permissive cell types to neurons. Endogenously, ASCL1 expression is often associated with neuroblast stem-ness. Moreover, ASCL1-mediated reprogramming of fibroblasts to differentiated neurons is commonly achieved using artificially high levels of ASCL1 protein, where ASCL1 acts as an "on-target" pioneer factor. However, the genome-wide effects of enhancing ASCL1 activity in a permissive neurogenic environment has not been thoroughly investigated. Here, we overexpressed ASCL1 in the neuronally-permissive context of neuroblastoma (NB) cells where modest endogenous ASCL1 supports the neuroblast programme. RESULTS: Increasing ASCL1 in neuroblastoma cells both enhances binding at existing ASCL1 sites and also leads to creation of numerous additional, lower affinity binding sites. These extensive genome-wide changes in ASCL1 binding result in significant reprogramming of the NB transcriptome, redirecting it from a proliferative neuroblastic state towards one favouring neuronal differentiation. Mechanistically, ASCL1-mediated cell cycle exit and differentiation can be increased further by preventing its multi-site phosphorylation, which is associated with additional changes in genome-wide binding and gene activation profiles. CONCLUSIONS: Our findings show that enhancing ASCL1 activity in a neurogenic environment both increases binding at endogenous ASCL1 sites and also results in additional binding to new low affinity sites that favours neuronal differentiation over the proliferating neuroblast programme supported by the endogenous protein. These findings have important implications for controlling processes of neurogenesis in cancer and cellular reprogramming.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos , Células-Tronco Neurais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Reprogramação Celular/genética , Células-Tronco Neurais/metabolismo , Neurogênese/genética , Neurônios/metabolismo
16.
NPJ Breast Cancer ; 8(1): 20, 2022 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-35177654

RESUMO

Triple Negative Breast Cancer (TNBC) accounts for 15-20% of all breast cancer cases, yet is responsible for a disproportionately high percentage of breast cancer mortalities. Thus, there is an urgent need to identify novel biomarkers and therapeutic targets based on the molecular events driving TNBC pathobiology. Estrogen receptor beta (ERß) is known to elicit anti-cancer effects in TNBC, however its mechanisms of action remain elusive. Here, we report the expression profiles of ERß and its association with clinicopathological features and patient outcomes in the largest cohort of TNBC to date. In this cohort, ERß was expressed in approximately 18% of TNBCs, and expression of ERß was associated with favorable clinicopathological features, but correlated with different overall survival outcomes according to menopausal status. Mechanistically, ERß formed a co-repressor complex involving enhancer of zeste homologue 2/polycomb repressive complex 2 (EZH2/PRC2) that functioned to suppress oncogenic NFκB/RELA (p65) activity. Importantly, p65 was shown to be required for formation of this complex and for ERß-mediated suppression of TNBC. Our findings indicate that ERß+ tumors exhibit different characteristics compared to ERß- tumors and demonstrate that ERß functions as a molecular switch for EZH2, repurposing it for tumor suppressive activities and repression of oncogenic p65 signaling.

17.
Chem Commun (Camb) ; 58(12): 1962-1965, 2022 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-35044383

RESUMO

The development of divinylpyrimidine (DVP) reagents for the synthesis of antibody-drug conjugates (ADCs) with in vivo efficacy and tolerability is reported. Detailed structural characterisation of the synthesised ADCs was first conducted followed by in vitro and in vivo evaluation of the ADCs' ability to safely and selectively eradicate target-positive tumours.


Assuntos
Antineoplásicos Imunológicos/farmacologia , Imunoconjugados/química , Indicadores e Reagentes/química , Pirimidinas/química , Animais , Antineoplásicos Imunológicos/efeitos adversos , Linhagem Celular Tumoral , Humanos , Imunoconjugados/efeitos adversos , Camundongos , Estudo de Prova de Conceito , Trastuzumab/efeitos adversos , Trastuzumab/farmacologia , Ensaios Antitumorais Modelo de Xenoenxerto
18.
Cancer Res ; 82(7): 1321-1339, 2022 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-35078818

RESUMO

Constitutively active estrogen receptor α (ER/ESR1) mutations have been identified in approximately one-third of ER+ metastatic breast cancers. Although these mutations are known as mediators of endocrine resistance, their potential role in promoting metastatic disease has not yet been mechanistically addressed. In this study, we show the presence of ESR1 mutations exclusively in distant but not local recurrences in five independent breast cancer cohorts. In concordance with transcriptomic profiling of ESR1-mutant tumors, genome-edited ESR1 Y537S and D538G-mutant cell models exhibited a reprogrammed cell adhesive gene network via alterations in desmosome/gap junction genes and the TIMP3/MMP axis, which functionally conferred enhanced cell-cell contacts while decreasing cell-extracellular matrix adhesion. In vivo studies showed ESR1-mutant cells were associated with larger multicellular circulating tumor cell (CTC) clusters with increased compactness compared with ESR1 wild-type CTCs. These preclinical findings translated to clinical observations, where CTC clusters were enriched in patients with ESR1-mutated metastatic breast cancer. Conversely, context-dependent migratory phenotypes revealed cotargeting of Wnt and ER as a vulnerability in a D538G cell model. Mechanistically, mutant ESR1 exhibited noncanonical regulation of several metastatic pathways, including secondary transcriptional regulation and de novo FOXA1-driven chromatin remodeling. Collectively, these data provide evidence for ESR1 mutation-modulated metastasis and suggest future therapeutic strategies for targeting ESR1-mutant breast cancer. SIGNIFICANCE: Context- and allele-dependent transcriptome and cistrome reprogramming in mutant ESR1 cell models elicit diverse metastatic phenotypes related to cell adhesion and migration, which can be pharmacologically targeted in metastatic breast cancer.


Assuntos
Neoplasias da Mama , Receptor alfa de Estrogênio , Segunda Neoplasia Primária , Células Neoplásicas Circulantes , Neoplasias da Mama/patologia , Receptor alfa de Estrogênio/genética , Feminino , Humanos , Mutação
19.
Clin Cancer Res ; 28(7): 1446-1459, 2022 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-35078861

RESUMO

PURPOSE: DNA-dependent protein kinase catalytic subunit (DNA-PKcs, herein referred as DNA-PK) is a multifunctional kinase of high cancer relevance. DNA-PK is deregulated in multiple tumor types, including prostate cancer, and is associated with poor outcomes. DNA-PK was previously nominated as a therapeutic target and DNA-PK inhibitors are currently undergoing clinical investigation. Although DNA-PK is well studied in DNA repair and transcriptional regulation, much remains to be understood about the way by which DNA-PK drives aggressive disease phenotypes. EXPERIMENTAL DESIGN: Here, unbiased proteomic and metabolomic approaches in clinically relevant tumor models uncovered a novel role of DNA-PK in metabolic regulation of cancer progression. DNA-PK regulation of metabolism was interrogated using pharmacologic and genetic perturbation using in vitro cell models, in vivo xenografts, and ex vivo in patient-derived explants (PDE). RESULTS: Key findings reveal: (i) the first-in-field DNA-PK protein interactome; (ii) numerous DNA-PK novel partners involved in glycolysis; (iii) DNA-PK interacts with, phosphorylates (in vitro), and increases the enzymatic activity of glycolytic enzymes ALDOA and PKM2; (iv) DNA-PK drives synthesis of glucose-derived pyruvate and lactate; (v) DNA-PK regulates glycolysis in vitro, in vivo, and ex vivo; and (vi) combination of DNA-PK inhibitor with glycolytic inhibitor 2-deoxyglucose leads to additive anti-proliferative effects in aggressive disease. CONCLUSIONS: Findings herein unveil novel DNA-PK partners, substrates, and function in prostate cancer. DNA-PK impacts glycolysis through direct interaction with glycolytic enzymes and modulation of enzymatic activity. These events support energy production that may contribute to generation and/or maintenance of DNA-PK-mediated aggressive disease phenotypes.


Assuntos
Proteína Quinase Ativada por DNA , Neoplasias de Próstata Resistentes à Castração , DNA , Proteína Quinase Ativada por DNA/genética , Proteína Quinase Ativada por DNA/metabolismo , Glicólise , Humanos , Masculino , Neoplasias de Próstata Resistentes à Castração/tratamento farmacológico , Neoplasias de Próstata Resistentes à Castração/genética , Proteômica , Piruvato Quinase/metabolismo
20.
Cancer Res Commun ; 2(7): 706-724, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-36923279

RESUMO

Inhibiting the androgen receptor (AR), a ligand-activated transcription factor, with androgen deprivation therapy is a standard-of-care treatment for metastatic prostate cancer. Paradoxically, activation of AR can also inhibit the growth of prostate cancer in some patients and experimental systems, but the mechanisms underlying this phenomenon are poorly understood. This study exploited a potent synthetic androgen, methyltestosterone (MeT), to investigate AR agonist-induced growth inhibition. MeT strongly inhibited growth of prostate cancer cells expressing AR, but not AR-negative models. Genes and pathways regulated by MeT were highly analogous to those regulated by DHT, although MeT induced a quantitatively greater androgenic response in prostate cancer cells. MeT potently downregulated DNA methyltransferases, leading to global DNA hypomethylation. These epigenomic changes were associated with dysregulation of transposable element expression, including upregulation of endogenous retrovirus (ERV) transcripts after sustained MeT treatment. Increased ERV expression led to accumulation of double-stranded RNA and a "viral mimicry" response characterized by activation of IFN signaling, upregulation of MHC class I molecules, and enhanced recognition of murine prostate cancer cells by CD8+ T cells. Positive associations between AR activity and ERVs/antiviral pathways were evident in patient transcriptomic data, supporting the clinical relevance of our findings. Collectively, our study reveals that the potent androgen MeT can increase the immunogenicity of prostate cancer cells via a viral mimicry response, a finding that has potential implications for the development of strategies to sensitize this cancer type to immunotherapies. Significance: Our study demonstrates that potent androgen stimulation of prostate cancer cells can elicit a viral mimicry response, resulting in enhanced IFN signaling. This finding may have implications for the development of strategies to sensitize prostate cancer to immunotherapies.


Assuntos
Neoplasias da Próstata , Receptores Androgênicos , Masculino , Humanos , Animais , Camundongos , Receptores Androgênicos/genética , Androgênios/farmacologia , Neoplasias da Próstata/tratamento farmacológico , Antagonistas de Androgênios/farmacologia , Linfócitos T CD8-Positivos/metabolismo , DNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA